

McGraw-Hill Education books are available at special quantity discounts to use as
premiums and sales promotions, or for use in corporate training programs. To contact a
representative, please visit the Contact Us pages at www.mhprofessional.com.

Security Oracle Database 12c: A Technical Primer
Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of Publisher,
with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other
trademarks are the property of their respective owners, and McGraw-Hill Education
makes no claim of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein
with the permission of Oracle Corporation and/or its affiliates.

ISBN 978-0-07-182617-4
MHID 0-07-182617-3

Sponsoring Editor Proofreader
Paul Carlstroem Paul Tyler

Editorial Supervisor Production Supervisor
Patty Mon Jean Bodeaux

Acquisitions Coordinator Art Director, Cover
Amanda Russell Jeff Weeks

Copy Editor
Margaret Berson

Information has been obtained by Publisher from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources,
Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or
completeness of any information included in this work and is not responsible for any
errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy,
adequacy, or completeness of any information contained in this Work, and is not
responsible for any errors or omissions.

About the Authors
Michelle Malcher IOUG Board of Directors President and DBA Team Lead, DRW Holdings

Michelle is an Oracle ACE Director and the DBA Team Lead at DRW Holdings in
Chicago, with several years’ experience in database development, design, and
administration. She has expertise in security, performance tuning, data modeling, and
database architecture of very large database environments. When she is not securing her
own company’s databases, she writes articles and gives presentations on security and
compliance topics as well as other database administrative areas such as RAC, ASM, and
recovery. She is also a contributing author for multiple books including the IOUG Best
Practices Tip Booklet. She has been very involved in the IOUG, and is currently serving
as president on the Board of Directors.

Paul Needham Senior Director of Product Management for Database Security, Oracle

Paul is responsible for the development of Oracle Database security features and products
spanning Oracle Advanced Security, Oracle Database Vault, Oracle Audit Vault and
Database Firewall, and Oracle Label Security. Joining Oracle Consulting in 1991, Paul
worked closely with customers to help identify their security needs and challenges, and
build innovative solutions. In 1998, he joined the Oracle Database Security product
management team, and has since then introduced many new database security features
and products. Prior to Oracle, Paul was responsible for various government projects at
BDM International, a multinational information technology company, and was an intern
at the National Security Agency studying database security. Paul graduated from Purdue
University with a Bachelor of Science degree in computer science.

Scott Rotondo Consulting Member of Technical Staff for Database Security, Oracle

Scott is a software architect for the Oracle Database Security development group. With
25 years of experience in the computer industry, Scott has held senior technical and
management positions in operating system and database development, primarily focused
on security features. From 2008 through 2010, Scott served as president of the Trusted
Computing Group, an industry consortium and standards body dedicated to enhancing
system security using mass-produced, standardized security hardware.

iv

Foreword
In the first half of the 1990s, few if any databases were connected to the Internet,

certainly not the Internet as we know it today. The primary consumers of our security
technologies back then were government and defense organizations concerned about data
classification and multilevel security. Compliance regulations were few and far between.
There was no such thing as the Payment Card Industry Data Security Standards (PCI-
DSS), and HIPAA was just beginning to take shape. If a DBA wanted to steal a large
amount of information (back then, a few megabytes was a “large” amount), they would
need to carry out a disk drive larger than a few construction bricks and almost as heavy.

Outside of Oracle’s multilevel security solutions, the set of database security
features used in our larger customer base consisted of discretionary access controls and
database roles. Threats to data from insiders, organized crime, hackers, and SQL injection
were not even a consideration. The primary security requirement was enforcing the
principle of need-to-know using privileges, roles, and views.

When I joined Oracle in 1993, the user base of any database was necessarily
limited—it was the day of client-server computing and, given the machines that databases
ran on, databases were rather small; the number of users who had access to that database
was small. For most customers database security was barely a consideration. SQL
injection was considered acceptable in some applications. In fact, I remember
demonstrating the use of SQL injection in Oracle Forms to show how easy it was to
modify a query. Of course, due to the client-server nature of most applications, this was
not a big deal as the application user was connected to the database using their own
personal credentials and not the One-Big-Application User Model used by applications
today.

Today, the world is a much different place. A DBA can walk out of work with
terabytes of information easily—in a form factor smaller than a mobile phone and
weighing even less. Privileged accounts and SQL injection are by some accounts the
number one method of accessing sensitive information. Privacy and compliance
requirements permeate nearly every industry worldwide. The Sarbanes-Oxley Act, the
EU Data Protection Directive, China’s Guide for Personal Information Protection, and
Japan’s APPI are just a few of the many regulations that customers must deal with on a
regular basis. Today, the three-tier software architecture is the standard and the user base
that has some level of access to application data is huge, typically measuring in the
thousands, if not more. Securing your data and infrastructure can no longer be an
afterthought, unless you want to appear on the front page of the news for having your
users’ personal information stolen. Security is something that must be considered as
important as high availability and scalability. When designing new applications, security
must be considered from the very beginning and through every stage of the lifecycle
development process.

That is where Securing Oracle Database 12c: A Technical Primer comes in. The
three authors have dozens of years of experience between them and more importantly—
dozens of years of Oracle Database security experience.

v

They begin with the basics—how to control access for your authorized users. This
includes the concepts of enforcing “least privilege,” for example, making it harder for
your trusted DBA or someone with unauthorized access to physically or figuratively walk
out with terabytes of sensitive information. Each user in your database, each application
schema, should have the smallest set of grants and privileges necessary to accomplish the
job—and here we see how to accomplish that and learn why it is paramount.

After having discussed access control fully, they discuss how to secure data in the
event of theft; how to secure data even if all access control is subverted. They introduce
the concept of data encryption and discuss how to implement it at multiple levels.

Next, they return to access controls, getting into more sophisticated approaches
such as column- and row-level access controls. This takes us beyond simple table and
system privileges. They then move to a related security feature: auditing. Here we
discover the auditing capabilities of the database and how to use them proactively, rather
than as an after-the-fact diagnostic tool.

SQL injection is next. SQL injection is perhaps the most ubiquitous attack
approach to databases. SQL injection exploits flaws in developed application code—not
in the database itself. Given that there is a lot more application code out there floating
around than database code, and given that much of that application code was written
without thinking about SQL injection issues, there are many vulnerable applications. A
quick search on the Internet for “SQL injection” will return millions of hits, many to
news articles describing the latest company attacked, breaching sensitive customer data
as a result. This book describes how database and security professionals can add a layer
of defense between the application and database in order to reduce the ability of an
outsider to launch a successful SQL injection attack.

Lastly, the authors look at implementing compliance. In 1993, if a company had
10 or even 100 Oracle databases running, that was considered “a lot.” Twenty years later,
having thousands, or even tens of thousands, of Oracle databases running is
commonplace. The need to ensure that all of these databases have the current patch and
have been rolled out using a secure configuration is paramount. Doing that assurance
check can be cumbersome, if not impossible, unless you have the right approach and
tools, of course; that is what this section is all about. You’ll see how to verify and
validate your system configuration compliance so that your database environment is set
up in a secure, validated fashion.

If you are interested in security—specifically, securing an Oracle database—this
is the book for you. While the title references Oracle Database 12c, most all of the
content is applicable to Oracle Database 9i and above.

Thomas Kyte
http://asktom.oracle.com/

vi

Acknowledgments
The authors wish to thank the following individuals who provided invaluable

assistance during the preparation and review of this manuscript: Troy Kitch, Melody Liu,
Vikram Pesati, and James Spooner.

vii

Introduction
The problem of securing important information has unfortunately become a

familiar one to organizations everywhere. A constant stream of news reports tells of
successful attacks that gain access to sensitive data and the legal, economic, and
reputational damage that results. Even though the vast majority of sensitive data is stored
in relational databases, very little of the information security effort in most organizations
is devoted to making those databases secure.

While there are many technologies and products available to improve the security
of a database in various ways, what is needed is a brief but comprehensive overview that
describes the major threats and appropriate techniques to address them. Attackers can be
expected to exploit any available weakness including incorrect configuration of security
controls in the database, unpatched operating system vulnerabilities, or compromised user
accounts. More indirect methods such as SQL injection or intercepting data on the
network are also possible. Truly securing a database system requires consideration of any
opening an attacker might use.

Each chapter in this book covers a single threat area, but they are all related.
There is no single solution that prevents all methods of attack, and each security
mechanism reinforces the others. Defense-in-depth is the only way to effectively combat
both threats that are known today and those that will be discovered tomorrow.

We begin with security features available within the database itself.

• Chapter 1: Controlling Data Access and Restricting Privileged Users
describes the fundamental notions of authenticating users and controlling the data
that they can access. It covers best practices for determining the access that each
user requires and limiting the powers of highly privileged users.

• Chapter 2: Preventing Direct Access to Data explains the use of encryption to
prevent attacks that attempt to gain access to data directly, bypassing the access
controls described in the previous chapter.

• Chapter 3: Advanced Access Control covers more sophisticated access control
mechanisms that allow for more precise control. These mechanisms include
Virtual Private Database, Oracle Label Security, and Real Application Security.

• Chapter 4: Auditing Database Activity describes the techniques for maintaining
an effective audit trail, which is a vital defense-in-depth technique to detect
misuse by privileged users and unexpected violations of the security policies
implemented in the previous chapters.

We then broaden the discussion to include external components that improve the
security of the database and the data it stores.

• Chapter 5: Controlling SQL Input explains the use of a specialized database
firewall to monitor the SQL statements going to the database. This helps to
protect the database against SQL injection attacks launched by Web users.

viii

• Chapter 6: Masking Sensitive Data covers the use of data masking to remove
sensitive information from data that is used for test or development purposes. It
also describes the use of Data Redaction to dynamically mask the results of
queries on production databases.

• Chapter 7: Validating Configuration Compliance describes the need to
evaluate the database configuration against accepted standards and the tools
available for performing the evaluation to ensure continued compliance.

Throughout the book, we highlight new features found in Oracle Database 12c.
However, the majority of the solutions described in this book are applicable to earlier
Oracle Database releases as well.

1

CHAPTER 1

Controlling Data Access
and Restricting Privileged Users

The most fundamental step in securing a database system is determining who should be

able to access which data. This chapter describes the management of user accounts and

the mechanisms for determining the access that each user has. It continues with a

discussion of the types of privileged access that a user may have and available tools for

removing any additional access they do not need.

User Management
All access to the database is through users, whether these are administrative users,

application accounts, or regular users. As the users have direct connection to the

database, it is important that they are properly authenticated and have appropriate roles,

and that their accounts cannot easily be compromised. It is also important to ensure that

there are proper resource constraints on their usage, or else the rest of the database may

be indirectly affected.

The CREATE USER statement is used to create a database user and its associated

schema. In the following example, the user is identified by a password, and the account

follows the policy specified by org_profile.

CREATE USER jsmith IDENTIFIED BY NoOne!Knows PROFILE org_profile

 DEFAULT TABLESPACE data_ts TEMPORARY TABLESPACE temp_ts;

A profile specifies a named set of resource limits and password parameters that

restricts excessive consumption of system resources and enforces constraints on the

passwords. The password-specific parameters provide password management including

account locking, password aging, password history, and password complexity

verification. The password verification function is perhaps the most important control to

ensure that users pick complex passwords, making it difficult for intruders to guess them.

The FAILED_LOGIN_ATTEMPTS parameter limits brute-force password-guessing attacks

by locking the account after a specified number of incorrect logins.

2

CREATE PROFILE org_profile LIMIT

 FAILED_LOGIN_ATTEMPTS 6 -- attempts allowed before locking

 PASSWORD_LIFE_TIME 180 -- max life-time for the password

 PASSWORD_VERIFY_FUNCTION ora12c_verify_function; -- Password complexity

check

The dictionary views DBA_USERS and DBA_PROFILES describe the users and

profiles, respectively. The privilege to create users must be limited to the DBA or the

security administrator. Each user should have an assigned tablespace; otherwise, any

objects they create would go into the SYSTEM tablespace, thus creating contention

between the data dictionary objects and the user objects.

Oracle Multitenant Database Users

Oracle Multitenant, an Oracle Database 12c option, includes both common and local

users. A common user is created in the container database and has the same user name

and password in all of the pluggable databases that are part of the container database. The

common user can have privileges that are granted at the container level, and other

privileges that are granted in each pluggable database. The privileges can be different in

each of the pluggable databases, but the user doesn’t need to be created in each pluggable

database.

To create a common user for the container database and all of the pluggable

databases, log in to the container database as SYSTEM and create a user with

CONTAINER=ALL. Note that all common user names begin with the prefix C##.

SQLPLUS> CONNECT SYSTEM@root

Enter password: **********

Connected.

SQLPLUS> CREATE USER C##DB_ADMIN

IDENTIFIED BY IronMan4

CONTAINER = ALL;

A local user, on the other hand, is created in the pluggable database, and does not

have access to the container. This is good for the administrator who manages a pluggable

database but does not manage the overall system. To create a local user, connect to the

3

pluggable database as SYSTEM, create the user, and grant the needed roles and privileges

as before, but specify CONTAINER=CURRENT instead of CONTAINER=ALL.

SQLPLUS> CONNECT SYSTEM@pdb1

Enter password: *********

Connected.

SQLPLUS> CREATE USER pdb1_admin

IDENTIFIED BY SpiderMan3

CONTAINER = CURRENT;

Storing Passwords

Users are expected to provide the password when they connect to the database, but

applications, middle-tier systems, and batch jobs cannot depend on a human to type the

password. Earlier, a common way to provide passwords was to embed user names and

passwords in the code or in scripts. This increased the attack surface and people had to

make sure that their scripts were not exposed to anyone else. Also, if passwords were

ever changed, changes to the scripts were required. Now you can store password

credentials by using a client-side Oracle wallet. This reduces risks because the passwords

are no longer exposed on command-line history, and password management policies are

more easily enforced without changing application code whenever user names or

passwords change.

To configure password storage using an Oracle wallet, set the

WALLET_LOCATION parameter in the sqlnet.ora file. The applications can then connect to

the database without providing login credentials, as follows:

CONNECT /@hr_db.example.com

Authentication Methods

Users need to be authenticated before being allowed to connect to the database. Oracle

supports different means of authentication including passwords stored locally within the

database or in directories. Users can also be authenticated by the operating system, using

the IDENTIFIED EXTERNALLY clause when creating the user, or by various third-party

authentication services, including Kerberos, SSL/TLS, and RADIUS. Passwords are only

4

used for one-way authentication of the user to the database, while Kerberos and PKI

support mutual authentication, ensuring that the user is indeed connecting to the proper

database.

Oracle clients and servers communicating over SSL/TLS must have a wallet

containing an X.509 certificate, a private key, and a list of trusted certificates. An

administrator sets up this configuration using Oracle Wallet Manager to create the wallet

to store the PKI credentials and Oracle Net Manager to configure sqlnet.ora and

listener.ora for SSL authentication. The following example shows how to create a user

with the PKI certificate:

SQL> CREATE USER jsmith IDENTIFIED EXTERNALLY AS

'cn=jsmith,OU=HR,O=oracle,c=US';

Users can authenticate to the database using Kerberos in environments that

support that service. This capability is configured by setting the required parameters in

the Oracle Database server and client sqlnet.ora files using Oracle Net Manager. The

following example shows how to create an externally authenticated user that corresponds

to the Kerberos user:

SQL> CREATE USER jsmith IDENTIFIED EXTERNALLY AS 'jsmith@example.com';

You can now connect to an Oracle Database server without using a user name or

password as follows:

$ sqlplus /@hr_db.example.com;

Centralized User Management
In an enterprise with a number of users accessing a number of databases, it is difficult to

manage unique accounts for each user in every database. Oracle Enterprise User Security

(EUS) enables centralized management of users and roles across multiple databases in

Oracle Internet Directory, which integrates with other directories such as Microsoft

Active Directory. Such users are called enterprise users, and they can be assigned

enterprise roles that determine access privileges across multiple databases. An enterprise

role consists of one or more global roles that grant database privileges to specific

databases.

5

EUS allows users and administrators to be authenticated by Oracle Internet

Directory using a password, Kerberos, or SSL. Upon connecting, the database refers to

the directory for user authentication, authorization (roles) information, and schema

mapping. Enterprise users can have their own schema, or they can share a global schema

in the databases they access. Here is an example of an enterprise user with an exclusive

schema, jsmith.

CREATE USER jsmith IDENTIFIED GLOBALLY AS 'CN=jsmith,OU=HR,O=oracle,C=US';

Users with Administrative Privileges

Certain users can connect with special administrative privileges, such as SYSDBA and

SYSOPER, to allow maintenance operations even when the database is not open. These

users can authenticate using a network-based authentication service such as Oracle

Internet Directory or based on membership of the connecting user in a particular

operating system group.

If a user must connect with administrative privilege using a password for

authentication, the password is stored outside the database in a password file, which is

administered using the orapwd command. User management functions such as locking

an account after multiple failed login attempts are not available for users in the password

file, although each failed attempt will cause an exponentially increasing delay to limit

password guessing when the database is running.

Proxy Authentication and Authorization
Sometimes administrators need to connect to an application schema to perform

maintenance. Sharing the application schema password among several administrators

would provide no accountability. Instead, proxy authentication allows the administrators

to authenticate with their own credentials first and then proxy to the application schema.

In such cases, the audit records show the actual user who performed the maintenance

activities. This form of proxy authentication is supported in Oracle Call Interface (OCI),

JDBC, and on the SQL*PLUS command line. Here is an example where the user

app_dba is allowed to connect to the database and act as hrapp.

ALTER USER hrapp GRANT CONNECT THROUGH app_dba;

6

Now the user app_dba can connect using his own password and assume the identity of

the hrapp user by proxy as follows:

CONNECT app_dba[hrapp]

Enter password: <app_dba_password>

Basic Access Control
Every object in the database, such as a table, view, or procedure, is contained within a

schema. A schema is a user in the Oracle Database that owns objects. The schema user

generally has full access to the objects contained within that schema. Access by other

users is determined by object privileges, which allow a user to perform a particular

operation on one specific object. Some typical operations for objects are SELECT,

INSERT, UPDATE, DELETE, ALTER, and EXECUTE.

The schema user that owns an object has the ability to grant object privileges to

other users. In addition, if an object privilege is granted with GRANT OPTION, the

recipient of the grant also gains the ability to grant the same privilege to others. The

ability to propagate grants in this way is powerful and should be used sparingly.

Here is an example of creating a user with just a few privileges: to create a session

and connect to the database, to select from the DEPARTMENTS table, to execute the

ADD_DEPARTMENT procedure, and full permissions to read and change data on the

ADVENTURES table:

SQL> CREATE USER jsmith IDENTIFIED BY "Raider5!";

SQL> GRANT CREATE SESSION TO jsmith;

SQL> GRANT SELECT ON hr.departments TO jsmith;

SQL> GRANT EXECUTE ON hr.add_department TO jsmith;

SQL> GRANT SELECT, INSERT, UPDATE, DELETE ON hr.adventures TO jsmith;

The dictionary table DBA_TAB_PRIVS shows the object privileges that have been

granted. This gives detail about the object including the schema owner and which

privileges were granted. This table can be used for reporting privileges and managing the

level of permissions.

7

SQL> SELECT GRANTEE, OWNER, TABLE_NAME, PRIVILEGE

 FROM DBA_TAB_PRIVS

 WHERE GRANTEE='JSMITH';

GRANTEE OWNER TABLE_NAME PRIVILEGE

-------- ------ ------------ ----------

JSMITH HR DEPARTMENTS SELECT

JSMITH HR ADVENTURES SELECT

JSMITH HR ADVENTURES INSERT

JSMITH HR ADVENTURES DELETE

JSMITH HR ADVENTURES UPDATE

JSMITH HR ADD_DEPARTMENT EXECUTE

When privileges are no longer needed on an object, they should be revoked.

SQL> REVOKE DELETE ON hr.adventures FROM jsmith;

System Privileges and Roles
Object privileges allow for very fine control over the data that a user can access, but

sometimes an administrator may require access to many objects. System privileges allow

access to all objects of a particular type; for example, SELECT ANY TABLE allows a user

to select from any table in any schema, and EXECUTE ANY PROCEDURE allows

execution of any PL/SQL procedure or function. Other system privileges apply to

operations that do not involve a specific object, such as the ability to create objects, users,

and roles; to change session and system parameters; and to export and import the

database. As you can see, these are privileges for the administrator who can perform

operations that have an impact across multiple schemas and objects.

Another convenient feature for managing privileges is the ability to group

multiple object and system privileges into a role. Roles are especially useful when there

is a need to grant a consistent set of privileges to several users. The roles are easier to

manage than individual privileges and can be matched up with an application or a job

function. Roles can be granted to other roles, allowing a large role like the DBA role for

the database administrator to be built up out of smaller components. Like the GRANT

option for object privileges, a system privilege or role can be granted with ADMIN

OPTION, which allows the recipient to grant the role or privilege to others.

8

The dictionary tables listed in the following table show the roles and privileges

granted to each user or role. For example, selecting from these tables shows that the DBA

role is extremely powerful, with more than 200 system privileges including CREATE and

ALTER SESSION; CREATE and ALTER ANY TABLE; SELECT, INSERT, UPDATE, and

DELETE ANY TABLE; EXPORT and IMPORT FULL DATABASE; DROP and CREATE

TABLESPACE; EXECUTE ANY PROCEDURE, and over a dozen roles.

Dictionary Table Contents

DBA_TAB_PRIVS Object privilege grants to roles or users

DBA_SYS_PRIVS System privilege grants to roles or users

DBA_ROLE_PRIVS Role grants to users or other roles

DBA_ROLES All defined roles

Least Privilege and Separation of Duty

The principle of least privilege denotes the idea that each user of the system should be

granted only the minimum set of privileges needed to accomplish their intended tasks or

functions. When granting privileges to a user or role, it is preferable to grant specific

object privileges that are needed rather than broad system privileges that allow access to

all objects in the database. Similarly, it is better to create roles that each contain a few

privileges designed to be used for a particular function instead of very powerful roles like

the built-in DBA role. Granting several of these smaller roles to a user allows for a close

match to the tasks that the user needs to perform without granting extra privileges that are

not required.

Closely related to the principle of least privilege is the concept of separation of

duty. This is the notion that privileges should be divided among several users instead of a

single powerful individual. Dividing administrative privileges in this way improves

accountability and makes trusted administrators less likely to abuse their privileges.

To support the principles of least privilege and separation of duty, Oracle

Database has long included a SYSOPER administrative privilege, which allows an

administrator to perform certain tasks like starting and stopping the database without

9

having the full range of powers conferred by the SYSDBA privilege. Oracle Database 12c

adds additional administrative privileges called SYSBACKUP, SYSDG, and SYSKM, to

enable database backups, Data Guard administration, and key management, respectively.

With these targeted privileges, one or more administrators can perform all of the normal

operations to manage a database without needing the all-powerful SYSDBA privilege.

Controlling Privileged Users

System privileges and powerful roles give significant control of the database, including

the ability to view all data and make changes to the data. Some administrative users need

these powerful privileges for maintenance, tuning, and backups, but they don’t need

access to all of the data. Even though the administrative users are trusted, it is important

to secure company data assets and personal information even from these privileged

accounts in order to prevent unauthorized use by insiders or attackers.

Oracle Database Vault provides several kinds of operational controls within the

database including realms, which enforce limits on access to specified objects such as

tables and views. After creating a Database Vault realm, objects are added to the realm

and database users can be designated as realm participants. This provides access only to

the realm participants, and excludes other users, even if they have powerful system

privileges like SELECT ANY TABLE that would otherwise allow them to access the

objects in the realm.

The following illustration shows an example of two realms, protecting database

schemas containing human resources (HR) and finance (FIN) data. Once enabled, the

realms prevent privileged administrative users or other application owners from using

their elevated privileges to access data. The privileged application owner HR is prevented

from accessing data inside the FIN realm, and even an administrator with the DBA role is

unable to access data in the HR and FIN realms.

10

In addition to regular realms, Oracle Database 12c adds the ability to create

mandatory realms. A regular realm will block the use of system privileges such as

SELECT ANY TABLE if the user is not a realm participant, but it doesn’t block the

schema owner or other users who gain access to the data using object privileges.

Mandatory realms prevent access by anyone who is not a realm participant. One popular

use for a mandatory realm is to continue to protect sensitive data during patching and

upgrades, when an administrator needs to make changes to the application schema but

should not have access to the data tables in that schema.

When Oracle Database Vault is configured, a couple of additional users are

created. The first of these is the Database Vault owner, who can create and manage

realms to control access to sensitive data. The second user is the Database Vault account

manager, who has the responsibility for creating users in the database. While a single user

could perform both functions, the ability to divide these duties among multiple users

allows for separation of duty as described earlier. Furthermore, there is a DVOWNER role

that can be granted to other users to delegate the ability to manage Database Vault

realms. This role should be granted to administrators who are responsible for the security

configuration of the database, rather than the general database administrator.

The following illustration shows the use of the Database Configuration Assistant

for enabling Oracle Database Vault. Management of Database Vault requires the use of

these specialized users and roles. The SYSDBA administrative privilege cannot be used for

realm or user management when Database Vault is enabled.

11

Managing Granted Privileges

Following the principle of least privilege means that each user, and each role granted to

users, should have only the minimal set of privileges needed to perform their intended

function. While there are dictionary tables to show which permissions and roles have

been granted, it is much harder to determine which ones are actually needed. This is

especially true in systems that have been in use for some time, since privilege and role

grants tend to accumulate and it is difficult to know when it is safe to revoke them.

Oracle Database Vault 12c includes a new feature called Privilege Analysis that

captures privileges as they are used at run-time and generates a series of reports. These

reports can be used to find privileges that may no longer be needed or even to generate

scripts to revoke unused privileges automatically.

12

Here is an example to enable the privilege capture for all users of the database.

SQLPLUS> BEGIN DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE

(NAME => 'dba_capture_all_privs',

DESCRIPTION => 'privilege_analysis_for_all_users',

TYPE => DBMS_PRIVILEGE_CAPTURE.G_DATABASE);

END;

/

PL/SQL procedure successfully completed.

After a suitable interval to capture the privileges used during normal operation,

the DBA_USED_PRIVS and DBA_UNUSED_PRIVS views will reveal which privileges

have been used and, more importantly, which granted privileges have not been used.

SQLPLUS> BEGIN DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT

(NAME => 'dba_capture_all_privs');

end;

/

PL/SQL procedure successfully completed.

SQLPLUS>SELECT USERNAME, USED_ROLE, SYS_PRIV, OBJ_PRIV, USER_PRIV,

OBJECT_OWNER,OBJECT_NAME

FROM DBA_USED_PRIVS;

SQLPLUS> SELECT USERNAME, USED_ROLE, SYS_PRIV, OBJ_PRIV, USER_PRIV,

OBJECT_OWNER, OBJECT_NAME

FROM DBA_UNUSED_PRIVS;

A script to revoke the unused privileges could be generated using a SQL

statement like the following. An administrator should review the script to verify the list

of privileges to be revoked before executing it.

--Generate a script to revoke

SQLPLUS> SELECT 'revoke '||OBJ_PRIV||' on '||OBJECT_OWNER||'.'||

OBJECT_NAME||' from '||USERNAME||';'

FROM DBA_UNUSED_PRIVS;

The views available to display the information generated in the privilege capture

are as follows.

13

View Description

DBA_PRIV_CAPTURES Lists information about existing privilege analysis policies.

DBA_USED_PRIVS

DBA_UNUSED_PRIVS
Lists the privileges that have (or have not) been used for

reported privilege analysis policies.

DBA_USED_OBJPRIVS

DBA_UNUSED_OBJPRIVS
Lists the object privileges that have (or have not) been

used for reported privilege analysis policies.

DBA_USED_OBJPRIVS_PATH

DBA_UNUSED_OBJPRIVS_PATH
Lists the object privileges that have (or have not) been

used for reported privilege analysis policies. It includes the

object privilege grant paths.

DBA_USED_SYSPRIVS

DBA_UNUSED_SYSPRIVS
Lists the system privileges that have (or have not) been

used for reported privilege analysis policies.

DBA_USED_SYSPRIVS_PATH

DBA_UNUSED_SYSPRIVS_PATH
Lists the system privileges that have (or have not) been

used for reported privilege analysis policies. It includes the

system privilege grant paths.

DBA_USED_PUBPRIVS Lists all the privileges for the PUBLIC role that have been

used for reported privilege analysis policies.

DBA_USED_USERPRIVS

DBA_UNUSED_USERPRIVS
Lists the user privileges that have (or have not) been used

for reported privilege analysis policies.

DBA_USED_USERPRIVS_PATH

DBA_UNUSED_USERPRIVS_PATH
Lists the user privileges that have (or have not) been used

for reported privilege analysis policies. It includes the user

privilege grant paths.

14

CHAPTER 2

Preventing Direct Access to Data

The previous chapter describes how to configure the Oracle database to control who has

access to which data. Setting up this access control to be enforced by the database is

critically important to ensure that all of the data is available to those who need it and not

accessible to anyone else. But of course, attackers are not limited to attacking where

defenses are the strongest; they will not keep trying the locked and deadbolted front door

when there is an open window nearby.

If the database is correctly set up to control access to data, then the attacker will

naturally try to bypass this enforcement by bypassing the database. One way to do that is

to gain access to the system as a privileged operating system user such as root or

oracle. Such a user can alter the behavior of the database program itself to ignore the

access control settings that have been configured. The best defense against this type of

attack is to prevent attackers from gaining access to the host system, following guidelines

for operating system hardening such as those produced by the Center for Internet

Security.

Another line of attack is to bypass the database by reading or writing the data

directly, either when it is stored in disk files or when it is in transit on the network

between two systems. Encryption is a useful technique for protecting data in both of these

situations because it reduces the problem of protecting a large amount of data to the

simpler problem of protecting a small encryption key. As long as the attackers do not

possess the key, any encrypted data they manage to intercept provides nothing useful.

Encryption is also frequently required in order to comply with regulations or security

standards regarding sensitive or personally identifiable information.

This chapter explains how to configure and use encryption to protect data at rest

and in transit. It also explains some of the considerations and options available for

securely storing the encryption keys that ultimately protect the encrypted data.

http://cisecurity.org/
http://cisecurity.org/

15

Data at Rest
When information is written to the database, it will eventually be stored in files on disk.

To ensure that an attacker cannot read the information directly from the disk files, each

application could encrypt the data before storing it in the database. However, this would

require extra programming for the application to encrypt data before storing it and

decrypt the data it retrieves. It would also require the application to manage the

encryption keys and securely store them somewhere. If multiple applications share the

information in the same database, all of them need to cooperate to encrypt and decrypt

the data.

To simplify this process, Oracle provides Transparent Data Encryption (TDE) as

part of Oracle Advanced Security. The encryption is transparent because the database

automatically encrypts data before it is written on disk and decrypts it when reading from

the disk. Applications that store and retrieve data in the database only see the decrypted

or plaintext data.

Because the encryption and decryption takes place automatically, this is not an

access control mechanism for Oracle database users, but rather a way to prevent

bypassing the database to access the data directly. Users and applications do not present a

decryption key when they retrieve data using a SELECT statement. Instead, the database

enforces the access control rules described in the previous chapter and denies access if

the user is not authorized to see the data. If the access is allowed, the data is

automatically decrypted before it is returned. Whether access is allowed or not, encrypted

data is never returned to the user.

Transparent Data Encryption is configured by specifying which data is to be

encrypted, along with a few options about how the encryption is to be performed. The

two choices for specifying what to encrypt are called column encryption, where only

specific columns within certain tables are encrypted, and tablespace encryption, where all

of the columns in all tables within a tablespace are encrypted.

Column encryption is specified by setting the ENCRYPT attribute of a column as

shown in the following example. Column encryption is most appropriate when only a few

16

columns contain sensitive data that needs to be protected, and these columns make up a

small portion of the total amount of data stored in the database. In this case, it may be

more efficient to incur the overhead of encrypting and decrypting only the sensitive

columns while storing the rest of the data in plaintext form. This method can also be used

on existing data at any time by using the ALTER TABLE command.

CREATE TABLE employee (

 first_name VARCHAR2(128),

 last_name VARCHAR2(128),

 empID NUMBER,

 salary NUMBER(6) ENCRYPT

);

For most use cases, however, tablespace encryption provides some noteworthy

advantages. Encrypting an entire tablespace removes the need to determine which data is

important enough to protect and which is not. Furthermore, it ensures that no sensitive

data is accidentally left out, either through oversight or changing requirements. When the

database runs on modern hardware that includes special instructions in the CPU to

accelerate cryptographic operations, the performance overhead for encrypting all data is

negligible, so that there is no need to make choices about what to protect. Tablespace

encryption is configured when the tablespace is created, as shown here:

CREATE TABLESPACE encrypt_ts

 DATAFILE '$ORACLE_HOME/dbs/encrypt_df.dbf'

 SIZE 100M

 ENCRYPTION USING 'AES128'

 DEFAULT STORAGE (ENCRYPT);

Data in Transit
Another way for an attacker to bypass the database and gain direct access to data is to

intercept the data as it travels over the network, such as between a client and the database

server. On many networks it is relatively easy for an attacker to capture network traffic

that is intended for another system and then extract whatever information was transmitted

between the two systems. For this reason, it is important to encrypt data when it is sent

over the network as well as when it is stored on disk.

17

The ability to protect data on the network, using either SSL or Oracle native

encryption, was formerly a part of the Advanced Security Option but is now a standard

feature of Oracle Database. This feature can be configured to provide both encryption (to

prevent others from reading data sent over the network) and integrity protection (to

prevent others from modifying or replaying the data).

The network data protection settings for each Oracle client and server are

configured in the sqlnet.ora file. The applicable settings for each system include the list

of cryptographic algorithms it supports and one of the four choices shown in the

following list for encryption and for integrity protection. Based on these settings, the two

systems negotiate when a connection is established to determine whether to enable

encryption, integrity protection, or both and which cryptographic algorithms to use.

• REJECTED The system will not enable this service (either encryption or

integrity protection). If the other system requires this service, the connection will

fail.

• ACCEPTED The system will not initiate a request to enable the service, but it

will agree to do so if requested by the other system.

• REQUESTED The system will request to enable the service, but will set up a

connection without it if the other system refuses.

• REQUIRED The system will request to enable the service. If the other system

refuses, the connection will fail.

Key Management and Storage

Modern cryptographic systems do not depend on secret encryption algorithms to keep

data secure. Professional cryptographers learned long ago that it is safer to use well-

known algorithms that have been carefully studied by experts to find any possible

weaknesses. The practical importance of this fact is that the security of the data being

protected depends entirely on maintaining the secrecy of the keys used for encryption.

Proper key management is essential to keep an attacker from discovering or guessing a

secret key and gaining access to whatever data it protects.

18

Administrators perform all of the key management operations needed for the

Oracle database using a series of SQL commands or a management interface that invokes

these commands. Beginning in Oracle Database 12c, there is a new option to connect to

the database as SYSKM instead of SYSDBA to perform key management operations.

Following the advice of the previous chapter about using the minimum privilege

necessary to perform a task, the SYSKM administrative privilege is designed to provide the

ability to perform all key management tasks without the unlimited power permitted by

SYSDBA.

Oracle Database 12c also introduces a new unified set of key management

commands under the ADMINISTER KEY MANAGEMENT statement. This statement

supports all of the key management operations that formerly required a combination of

the orapki utility and the ALTER SYSTEM statement. See the following examples of

using the new commands.

Connect using the SYSKM administrative privilege.

sqlplus user/password AS SYSKM

Create a new Oracle wallet.

SQL> ADMINISTER KEY MANAGEMENT

 CREATE KEYSTORE 'keystore_location'

 IDENTIFIED BY keystore_password;

Open an Oracle wallet.

SQL> ADMINISTER KEY MANAGEMENT

 SET KEYSTORE OPEN IDENTIFIED BY keystore_password;

Make a backup copy of an Oracle wallet.

SQL> ADMINISTER KEY MANAGEMENT

 BACKUP KEYSTORE

 IDENTIFIED BY keystore_password

 TO 'backup_location';

Set or rotate the TDE master encryption key.

SQL> ADMINISTER KEY MANAGEMENT

 SET ENCRYPTION KEY

 IDENTIFIED BY keystore_password;

19

The most important aspect of key management is storing the keys in a safe

location. The Oracle Database and other Oracle products use a special file called a

“wallet” to store encryption keys and other secret data. The contents of the wallet, in turn,

are encrypted using a key derived from a password that must be provided by a user

whenever the wallet is opened to access the keys inside. The password used to encrypt

the wallet is not stored anywhere, so there is nothing for an attacker to discover. Of

course, if the password is somehow lost or forgotten, there is no way to open the wallet or

access the data that is encrypted using that wallet.

Typically, an Oracle Database using TDE stores its master key in an Oracle

wallet, which it opens when the database is started. In some installations, however, it is

not feasible to have an administrator present to provide the wallet password when the

database is started. For this situation, Oracle wallets can be configured with an “auto-

login” option, which allows the database to open the wallet without a password. While

the contents of the wallet are still obfuscated in this case, this does not provide the same

level of protection as a regular password-protected wallet. This alternative should only be

used when there are sufficient external protections in place to prevent an attacker from

gaining access to the wallet file.

Another alternative to make keys conveniently accessible to the database and

enjoy some additional security benefits is to store the keys remotely on a separate

enterprise key management server, such as the Oracle Key Vault, which the database

accesses over the network. Communications between the database and the key server are

protected using a network protocol such as SSL. This also allows the database to be

authenticated automatically by the key server without the need for an administrator to

supply a password when the database is started. The key server provides a central

location where keys, which may be the most valuable data that an organization possesses,

can be safely backed up or replicated to ensure that they are always available. A

specialized key server also automates the process of managing the lifecycle of each key,

including tracking its creation and ownership, the purposes for which the key should be

used, and when the key needs to be rotated or replaced with a new key.

20

Many regulations, such as those developed by the Payment Card Industry (PCI),

require periodic rotation of encryption keys to limit the exposure if a single key is

somehow disclosed. The Oracle Database uses a two-tier architecture to minimize the

cost of key rotation and thus make it practical to rotate keys more frequently. Oracle

Transparent Data Encryption uses a master key, which is stored in a wallet or key server.

Instead of encrypting the data directly, the master key is used to encrypt the internally

generated keys that are used for column and tablespace encryption. When the master key

is replaced with a new key, there is no need to re-encrypt all of the data, only the much

smaller set of data encryption keys.

21

CHAPTER 3

Advanced Access Control

The first chapter explained the importance of controlling which users have access to

which data by selectively granting object privileges. Users should have access only to the

tables containing data they need to perform their tasks. However, even when an object

privilege such as SELECT or INSERT is granted to a user for a specific table, the privilege

provides access to everything within that table. Database tables for most applications,

however, contain much more data than any single user should be able to access.

As a simple example, consider a table of employees such as the EMP table in the

SCOTT sample schema. It might be appropriate to allow all users to view the basic

information about employee names and departments, but not information about

compensation including the SAL and COMM columns. Similarly, an organization might

want to restrict access to specific rows in the table, perhaps allowing employees to view

data only for their own department or division.

The long-standing solution to this challenge in a relational database is to create a

view containing a WHERE clause that restricts access as desired and grant users access

only to the view, not the underlying table. For example, the view shown next provides

access only to the noncompensation information about employees in a single department.

SQL> create or replace view emp_dept20 as

 2 select empno, ename, job, mgr, hiredate, deptno

 3 from emp where deptno = 20;

View created.

SQL> select * from emp_dept20;

 EMPNO ENAME JOB MGR HIREDATE DEPTNO

---------- ---------- --------- ---------- --------- ----------

 7369 SMITH CLERK 7902 17-DEC-80 20

 7566 JONES MANAGER 7839 02-APR-81 20

 7788 SCOTT ANALYST 7566 19-APR-87 20

22

 7876 ADAMS CLERK 7788 23-MAY-87 20

 7902 FORD ANALYST 7566 03-DEC-81 20

The difficulty with using views for this purpose is that the criteria for selecting

which data to include must all be embedded in the view definition. While it is possible to

include subqueries within the WHERE clause, for example to determine the requesting

user’s department number, it quickly becomes complicated to write a SQL query that

accurately expresses the desired policy. The difficulty is compounded by the fact that

there are typically exceptions to the regular policy, say to provide greater access for HR

administrators or for the manager of a department.

The Oracle Database addresses this need with a feature called Virtual Private

Database (VPD). Using VPD, a PL/SQL function provided by the administrator is

executed to generate the appropriate WHERE clause each time the table is accessed. This

makes it relatively easy to do whatever computation is needed to determine the allowed

access. The following listing shows a simple PL/SQL function with the same policy as

the view in the preceding example, extended to work for any department and provide

increased access for HR administrators.

function emp_policy(p_schema in varchar2, p_table in varchar2)

 return varchar2 is

 user VARCHAR2(100);

 match NUMBER;

 my_dept NUMBER;

 begin

 -- Get the requesting user

 user := sys_context('USERENV', 'SESSION_USER');

 -- Check if requestor is an HR employee

 select count(*) into match from emp

 where ename = user and job like 'HR%';

 if match > 0 then

 return '1=1'; -- match all rows

 end if;

 -- Find the requesting user's department

23

 select deptno into my_dept from emp

 where ename = user;

 return 'deptno = ' || my_dept;

 end;

Finally, VPD can support other policy variations that would be difficult or

impossible to implement using views alone. Instead of always excluding a column

containing sensitive information, a VPD policy can include the column but only allow

access to its contents to certain users while others retrieve null values. It is also possible

for the VPD policy to provide access to different rows depending on the operation the

user is performing. This is useful, for example, to allow users to view information about

all employees but only update their own.

While VPD offers full flexibility in determining the filtering predicate, the

developer is responsible for the access control logic and managing any application-

specific rules and constraints. For example, in this case, the access control was based on

the JOB and DEPTNO columns. In some other cases, the access control decision may be

controlled by a specific application role.

Controlling Access Using Data Labels

One particular method for using fine-grained access control as described in the preceding

section involves attaching a label to each item of data that describes its sensitivity or

importance. In many government and corporate environments, a document might be

labeled as TOP SECRET or INTERNAL USE ONLY, and then only people who have a

sufficiently high “clearance” level are allowed access to those documents. Typically the

labels reflect an ordered set of levels, and each user is assigned a maximum level that he

or she is permitted to access. This capability allows the database to inherently know

which data is sensitive and restrict access to it accordingly.

To support this common access control model, Oracle Label Security (OLS)

simplifies the process of assigning labels to data and users and enforcing access control

based on those labels. Associated with every row in a table protected by OLS is a label

24

that indicates the sensitivity of the data. The label for each row can be set explicitly based

on business logic, but more often the system sets the label automatically based on the

label of the user session that inserted the row in the table. The label of the user session, in

turn, is calculated from a variety of factors, including the identity of the user, the type of

connection to the database, and so on. A user’s label can be thought of as an extension to

standard database privileges and roles. Oracle Label Security is enforced within the

database, providing strong security and eliminating the need for complicated application

views.

The format of a label is expressive enough to accommodate virtually any data

classification scheme. Every label includes a level, ordered from lowest to highest, to

indicate the overall sensitivity of the data. Within a level, optional components called

compartments and groups can be used to segregate information based on attributes such

as project, department, or geographic region. Unlike with the level component, there is no

ordering between compartments. Groups may include other groups, which provides a

convenient way to represent divisions based on geography or organizational hierarchy.

Figure 3-1 shows an example of a classification scheme using all three label components.

Figure 3-1: Components of a label

Once labels exist for both the data and user sessions, a simple set of rules is used

to compare the labels and decide if access is permitted. A user can read from a labeled

row in a table if the user’s label has a level at least as high as the data label and has all of

the compartments and at least one of the groups (or a parent of one of the groups)

specified in the data label. Using the example in Figure 3-1, a user whose label includes

the Global group can access data that is labeled with either the NATO or Europe group.

25

The key advantage to using Oracle Label Security is flexibility and simplified

administration. OLS provides the same type of row-level access control as VPD, but does

not require the administrator to create the PL/SQL policy function to enforce the access

rules. Once a system is in place to assign labels to data and user sessions, access control

is uniformly enforced everywhere without requiring explicit decisions about who should

be able to access the data in each individual table.

Applying Access Control Policies
to Application End Users

The methods described so far address the problem of controlling data access by database

users. However, in modern three-tier applications, the application end users do not

interact directly with the database. Database queries and updates are typically performed

by a single database user that represents the entire application rather than by the

individual end user.

Because the end user’s identity is unknown to the database, per-user access

control policies must be enforced by the application instead. Besides requiring extra

software development in the application, this approach can lead to inconsistent

enforcement, especially when there are elements of the system that can bypass the

application and connect directly to the database.

Introduced in Oracle Database 12c, Oracle Real Application Security (RAS)

provides the next generation of application access control framework within the database,

enabling three-tier and two-tier applications to declaratively define, provision, and

enforce their access control requirements at the database layer. Oracle RAS introduces a

policy-based authorization model that recognizes application-level users, privileges, and

roles within the database, and then controls access on both static and dynamic collections

of records representing business objects.

With RAS, the identity of the application end user is propagated to the database

so that access control policies can be enforced within the database itself. Each application

end user is represented by a lightweight “application user” that does not have its own

schema to store data objects or dedicated connection to the database, as a regular

26

database user would. The application can create any number of application user sessions

and switch between them while using a single connection to the database. This

application user session allows the database to know which end user has initiated the

operation being performed by the application so that the database can enforce the

appropriate access control policies.

Real Application Security can enforce fine-grained restrictions on access to

columns and rows within a database table, just like the Virtual Private Database feature.

However, RAS uses a more general, declarative syntax for the administrator to specify

these restrictions. First, the administrator creates one or more data realms for each table

to be protected. Each realm identifies an applicable subset of the rows within the table

using the same syntax as the WHERE clause in a SQL query. Then an access control list

(ACL) is attached to each realm to identify which users or roles have permission to

perform which operations on the data within that realm.

Furthermore, RAS allows the database to enforce additional security policies that

are unique to each application. The application can define its own privileges in addition

to the usual SELECT, INSERT, UPDATE, and DELETE to represent more complex

operations that are specific to that application. The administrator can specify that access

to a column requires the user to have a particular application-defined privilege. Also, the

application can include a check for one of its application-defined privileges as part of a

SQL statement, causing the statement to take effect only on data where the user has been

granted the required privilege.

Figure 3-2 shows an example of a table called EMPLOYEES and its associated

data security policy. The policy contains a single realm, which specifies all rows where

the DEPARTMENT_ID column contains the value 60 or 100. The ACL associated with

this realm allows only users with the application-defined Employee_Role or

Manager_Role to select these rows from the table. The SALARY column is further

protected, requiring the VIEW_SENSITIVE_INFO privilege—also defined by the

application—to access the values in this sensitive column. The ACL grants this privilege

to users who possess the Manager_Role.

27

Figure 3-2: Table with data security policy

With built-in support for propagating application users’ sessions to the database,

Oracle RAS allows security policies on data to be expressed directly in terms of the

application-defined users’ roles, and data operations. The RAS security model allows

uniform specification and enforcement of access control policies on business objects

irrespective of the access path. Using declarative access control policies on application

data and operations, Oracle RAS enforces security close to the data and enables end-to-

end security for both three-tier and two-tier applications.

28

CHAPTER 4

Auditing Database Activity

Maintaining an audit trail of activity is an essential component of any defense-in-depth

strategy for securing a database. Even when access controls are properly configured and

privilege grants are minimized, two important risks still remain. The first is that users

who need significant privileges to perform their jobs may misuse those privileges. The

second is that a user may gain unexpected access via access controls or privilege grants

that are unintentionally configured to be more generous than necessary. Auditing is the

primary tool for detecting these incidents if they occur so that they can be corrected.

Effective auditing requires audit policies that are selective in capturing the

important details about significant events while minimizing the noise from routine

activity. It requires secure storage for the audit data so that it is a reliable record of events

and especially so that it cannot be manipulated to hide suspicious activities. Finally, it

requires convenient ways to search through the collected audit data to find specific

information or detect unusual activity.

Research by the Independent Oracle Users Group (IOUG) with Oracle customers

shows that 70 percent of enterprises are using native auditing on their databases.

Customers audit databases to comply with SOX, HIPAA, PCI DSS, GLB, FISMA, and

other international standards. Auditing provides a history of who did what and when and

enables organizations to meet stringent controls and reporting requirements. Internal

governance, local security policies, and forensic reporting also drive the need to audit.

Most enterprises want to be able to attribute any request or change to data, or

modification to the database, to specific events that are authorized in terms of who or

what was issuing the command, and the business justification behind such interaction.

Compliance auditors expect that the custodians of the database, the database

administrator (DBA) and their management line, usually up to the CFO and CSO, can

account for all accesses and changes to data and the database itself.

29

The Oracle Database provides the industry’s most comprehensive auditing

capabilities, enabling detailed information on events to be captured for reporting and

alerting. Details such as database name, host name, client program name, event time,

event status, event action, database user, object owner, and the SQL statement itself are

among the information captured with auditing. Auditing can be configured to log both

successful and unsuccessful events. For even finer-grained auditing, Oracle Database

supports the ability to audit when specific columns in application tables are referenced.

For example, a table containing credit limits could have a fine-grained audit policy that

audits only when the credit limit column is updated.

Audit Changes in Oracle Database 12c

Oracle Database 12c advances the rich database auditing capabilities of prior Oracle

releases with expanded auditing options and simplified administration. Oracle Database

12c audit policies can be configured to audit based on specific IP addresses, programs,

time periods, or connection types, such as proxy authentication. In addition, specific

schemas can be easily exempted from auditing. This dramatically reduces the number of

audit records generated, and ensures that the relevant audit data can be found when

needed.

Oracle Database 12c Auditing enables selective and effective auditing inside the

Oracle database using policies and conditions. In addition, Oracle Database 12c supports

the Oracle Database 11g auditing syntax. This “Mixed Mode” support enables scripts and

any tools that used previous auditing syntax. Oracle Database 12c Unified Auditing

creates one audit trail for all of the following audit sources:

• Audit records (including SYS audit records) from unified audit policies and fine-

grained audit records from the DBMS_FGA PL/SQL package

• Management of the unified audit policies themselves

• Oracle Database Vault

• Oracle Label Security

• Oracle Recovery Manager

30

• Oracle Data Pump

• Oracle SQL*Loader Direct Load

The unified audit trail, which resides in read-only tables in the AUDSYS schema,

makes this information available in a uniform format in the UNIFIED_AUDIT_TRAIL

view. When the database is not writable, audit records are written to operating system

files in the $ORACLE_BASE/audit/$ORACLE_SID directory and then loaded back into

the unified audit trail when the database becomes writable.

To provide separation of duty from traditional DBA functions, Oracle Database

12c introduces two new roles: AUDIT_ADMIN for management of policies and audit

trail, and AUDIT_VIEWER for viewing audit data. As these roles are not granted to the

DBA role, the DBA is not able to alter the audit collection. Audit data can only be

managed using the built-in audit data management package within the database and

cannot be directly updated or removed using SQL UPDATE or DELETE commands. In

addition, there is a list of mandatory audit activities in Oracle Database 12c that cannot be

turned off. These are

• CREATE/ALTER/DROP AUDIT POLICY

• AUDIT/NOAUDIT

• EXECUTE of the DBMS_FGA PL/SQL and DBMS_AUDIT_MGMT PL/SQL

packages

• ALTER TABLE on the AUDSYS audit trail table (even though this table cannot be

altered)

• Top-level statements by the SYS user or with the SYSDBA, SYSOPER,

SYSASM, SYSBACKUP, SYSDG, and SYSKM administrative privileges,

until the database opens

• Auditing the actions of privileged users until the audit configurations in the

system are available

• All configuration changes that are made to Oracle Database Vault

31

Predefined Audit Policies in Oracle Database 12c

Three default audit policies are configured and shipped out of the box. Each has been

configured to provide audit settings for common audit use-cases.

1. The Secure Configuration (ORA_SECURECONFIG) Unified Audit policy provides

all the secure configuration audit options. This policy is enabled by default.

SQL Command CREATE AUDIT POLICY ORA_SECURECONFIG

PRIVILEGES ALTER ANY TABLE, CREATE ANY TABLE, DROP ANY TABLE,

CREATE ANY PROCEDURE, DROP ANY PROCEDURE, ALTER ANY

PROCEDURE,

GRANT ANY PRIVILEGE, GRANT ANY OBJECT PRIVILEGE, GRANT

ANY ROLE,

AUDIT SYSTEM, CREATE EXTERNAL JOB, CREATE ANY JOB,

CREATE ANY LIBRARY,

EXEMPT ACCESS POLICY,

CREATE USER, DROP USER,

ALTER DATABASE, ALTER SYSTEM,

CREATE PUBLIC SYNONYM, DROP PUBLIC SYNONYM,

CREATE SQL TRANSLATION PROFILE, CREATE ANY SQL

TRANSLATION PROFILE,

DROP ANY SQL TRANSLATION PROFILE, ALTER ANY SQL

TRANSLATION PROFILE,

CREATE ANY SQL TRANSLATION PROFILE, DROP ANY SQL

TRANSLATION PROFILE,

ALTER ANY SQL TRANSLATION PROFILE, TRANSLATE ANY SQL,

EXEMPT REDACTION POLICY,

PURGE DBA_RECYCLEBIN, LOGMINING,

ADMINISTER KEY MANAGEMENT

ACTIONS ALTER USER, CREATE ROLE, ALTER ROLE, DROP ROLE, SET ROLE,

CREATE PROFILE, ALTER PROFILE, DROP PROFILE,

CREATE DATABASE LINK, ALTER DATABASE LINK, DROP DATABASE

LINK,

LOGON, LOGOFF, CREATE DIRECTORY, DROP DIRECTORY;

32

2. Oracle Database Parameter Changes (ORA_DATABASE_PARAMETER) audits

commonly used Oracle Database parameter settings. By default, this policy is not

enabled.

SQL Command CREATE AUDIT POLICY ORA_DATABASE_PARAMETER

ACTIONS ACTIONS ALTER DATABASE,

ALTER SYSTEM,

CREATE SPFILE;

3. User Account and Privilege Management (ORA_ACCOUNT_MGMT) predefined

Unified Audit policy audits commonly used user account and role settings. By

default, this policy is not enabled.

SQL Command CREATE AUDIT POLICY ORA_ACCOUNT_MGMT

ACTIONS CREATE USER, CREATE ROLE,

ALTER USER, ALTER ROLE,

DROP USER, DROP ROLE,

SET ROLE,

GRANT,

REVOKE;

Customized Audit Policies

Where default policies do not capture the desired audit data, or where fewer events need

auditing, the customized policy can refer to any context attribute of the user session. An

example of a customized policy is shown in the following listing:

CREATE AUDIT POLICY customer_audpol

 ACTIONS

 INSERT ON sales.CUSTOMERS,

 UPDATE ON sales.CUSTOMERS,

 DELETE on sales.CUSTOMERS

 WHEN 'SYS_CONTEXT(''USERNEV'',''IP_ADDRESS'') = ''192.0.2.1'''

 EVALUATE PER STATEMENT;

AUDIT POLICY customer_audpol;

33

In this example, the policy will monitor any INSERT, UPDATE, and DELETE

statements from the client with IP address 192.0.2.1.

Monitoring with Oracle Audit Vault
and Database Firewall
While audit generation is simple and highly automated, there are other aspects to

developing a comprehensive audit plan. First, a large deployment of Oracle and non-

Oracle databases can produce a great deal of audit data to consolidate. Secondly, good

practice dictates that audit data should be transmitted to a remote centralized location

where it is secure from tampering by the individuals whose activities are being audited.

Finally, it is important to have a way to efficiently monitor the ongoing stream of audit

data to find the particular events with security implications and identify problems that

need immediate attention.

Oracle Audit Vault and Database Firewall (AVDF) simplifies the collection of

audit records in a secure repository, creates separation of duty from the databases it is

auditing, and produces consolidated reports and alerts on audit event data. AVDF collects

audit data not just from Oracle databases, but also from Oracle MySQL, Microsoft SQL

Server, SAP Sybase, and IBM DB2 for LUW. It is designed for enterprises that wish to

collate information from hundreds of database instances and provide unified policy

management and event propagation from a single platform.

AVDF has four main components:

• Audit Vault (AV) Server, which is the central repository of audit records

(unsurprisingly, held in an Oracle database!). It includes Oracle technologies such as

compression, partitioning, encryption, and privileged user controls. AV Server

performs four primary roles:

• Consolidation of audit data and event logs from Firewall, Oracle and non-

Oracle databases, operating systems, directories, and other custom sources.

Audit Vault can also be configured to encrypt data during transmission.

• Management of the audit policies

34

• Alerting and managing out-of-policy transactions

• Reporting and distribution of ad-hoc or scheduled reports

• Audit Vault Agents, which are low-impact host-based programs that manage the

collection of data from systems where they are installed and communicate with the

AV server.

• Audit trails, the sources of audit data. There are five kinds of audit trails:

• Database audit trails including Oracle, Microsoft SQL Server, SAP Sybase,

IBM DB2 for LUW, and MySQL. These can be audit tables, audit files, or

REDO records.

• OS audit trails (Linux, Windows, Solaris)

• Directory services such as Microsoft Active Directory

• File systems such as Oracle ACFS

• Custom audit data in either database tables or XML files

Database Firewall, the network component of AVDF. Database Firewall monitors

SQL transactions over the network and can decide whether a SQL statement should be

permitted, modified, blocked, or substituted before it reaches the database server. The

next chapter describes the operation of Database Firewall; for now it is sufficient to know

that it supplies audit data about its activity to Audit Vault. Figure 4-1 shows the

deployment of Oracle Audit Vault and Database Firewall with many sources of audit data

in a heterogeneous network environment.

35

Figure 4-1: Oracle Audit Vault and Database Firewall architecture

Reporting and Alerting

The Audit Vault Server has comprehensive reporting providing a selection of standard

security reports, ad-hoc reports, and forensic reports. There are also out-of-the-box audit

assessment reports designed to help meet the requirements of standards including PCI-

DSS, GLBA, HIPAA, SOX, and DPA.

Reports like the one in Figure 4-2 can be used to monitor a wide range of activity

including privileged user activity on the database server, changes to database structures,

and data on inbound SQL statements on the network. Reports can display consolidated

audit information from databases, operating systems, and directories, providing a holistic

picture of activities across the enterprise.

36

Figure 4-2: Consolidation from network, database audit, and OS event logs

An auditor can access reports interactively through a console Web interface or

through PDF or XLS files and automatically distribute them to different organizational

teams. Rules can automatically highlight specific rows for you to quickly spot suspicious

or unauthorized activity. Oracle BI Publisher can be used to create new or customized

PDF and XLS report templates to meet specific security needs.

Reporting takes place against a highly optimized Oracle 11gR2 database, which

also can be configured to allow external reporting tools to access audit data. This means

that existing Management Information (MI) tools or even Excel spreadsheets can access

important security information, but the ability to change or delete data is strictly

prohibited to retain the integrity of audit records. Furthermore, the Audit Vault repository

schema is documented to enable integration with third-party reporting solutions.

Alert or Event Management lets you create complex alert definitions that will

allow alerts to be raised on the Auditor console dashboard and notifications to be

distributed to multiple users for attestation. Alerts can be defined specifying a Boolean

condition using SQL comparison operators (=, <, LIKE, IN, NULL, and so on) and

logical operations (NOT, AND, OR). Furthermore, groups (using parentheses) and

wildcards (%, _) can be applied to give breadth to generalized alert conditions. For

37

example, you may have a table JOBS containing sensitive data that should only be

accessed by an authorized account such as HR_App. The example in Figure 4-3 shows

that an alert will be raised if the JOBS table is accessed by any user that is not HR_App.

Figure 4-3: AVDF alerting

38

CHAPTER 5

Controlling SQL Input

Studies conducted by government and academic institutions have concluded that a large

percentage of data breaches are perpetrated using SQL injection or misused credentials of

insiders who have authorized access to the system and its data. Most applications today

operate using a single user account for communicating with the database, and many do

not validate their input sufficiently. This application architecture, combined with the

increasing number of attacks on databases via SQL injection or insiders with access to

privileged accounts, has made database activity monitoring an important component of

the overall security architecture.

Most monitoring solutions on the market today rely on regular expressions within

their policies to determine which SQL statements should be blocked from reaching the

database. The challenge with these first-generation solutions is that regular expressions

do not match the expressive power of the SQL language. Because there are many

different ways to write a SQL statement that will have some harmful effect, it is nearly

impossible to write a regular expression rule that will detect all such statements.

Even if it were feasible to match the SQL statements using regular expressions,

the set of harmful statements does not remain constant. Instead of blocking a fixed set of

“bad” statements, it is much more effective to allow only “good” statements based on the

normal activity of the applications and users that connect to the database. Effective

monitoring of SQL input to the database can block or raise alerts for attempted policy

violations and provide comprehensive reports about database activity for compliance

purposes.

Oracle Audit Vault and Database Firewall
Oracle Audit Vault and Database Firewall provides a first line of defense for Oracle and

non-Oracle databases and consolidates audit data from databases, operating systems, and

directories. The Database Firewall component of the solution incorporates a highly

accurate SQL grammar-based engine to monitor and block unauthorized SQL traffic

39

before it reaches the database. Unlike solutions that leverage regular expressions,

Database Firewall parses the SQL itself to achieve the level of accuracy required for

enterprise database monitoring.

Database Firewall collects the SQL request from the network using highly

optimized traffic capture techniques. The SQL query is then associated with as much

session information as possible. This includes the grammatical structure of the query and

context attributes such as:

• Database user name (for example, dba_001)

• OS user name (for example, oracle_dom1\fred.bloggs)

• Client program name (for example, sqlplus.exe)

• Client IP address (for example, 192.0.2.12)

• Time of transaction (millisecond accuracy)

• Secured target name (for example, db11gr2.internal.oracle.com)

• Database service name (for example, accounts.service1)

This information is then combined with further analysis of the SQL statement,

including

• SQL category (for example, SELECT, DML-write, DDL, DCL, TCL,

 and so on)

• Table name (for example, “tbl_customers”)

All of this work is completed in real time as network packets arrive and a

comparison of the request against Database Firewall policy can then take place. Database

Firewall groups SQL requests into clusters of queries with the same grammatical sense,

enabling the distillation of hundreds of millions of SQL queries down to just a few

hundred, which in turn can be subcategorized by IP addresses, client programs, SQL

types, or user names. This process of distilling millions of seemingly unsystematic SQL

queries to orders-of-magnitude fewer clusters of activity gives Database Firewall the

ability to distinguish the “normal” transaction from the “abnormal” transaction.

40

Whitelists with Database Firewall
Database Firewall automatically analyzes all SQL traffic and provides a policy manager

to quickly set up whitelists of “normal” behavior for applications and users who generally

perform the same type of SQL interaction. Whitelist policies are created based on SQL

requests that have been seen from attributes that are definitively and uniquely associated

with an application enabling selective and effective monitoring. Typical examples would

be:

• Application IP addresses (for example, 192.0.2.100, 192.0.2.101,

 192.0.2.102)

• Application program names (for example, service_123abff00,

 service_123ccdd00)

• Application DB users (for example, db_appuser, db_appadmin)

Blacklists with Database Firewall
In addition to the positive security enforcement model based on whitelists, Database

Firewall also supports blacklists. As with whitelist policies, blacklist policies can

evaluate various factors such as user name, IP address, time of day, and program, before

making the decision. Blacklists act as exceptions to the positive enforcement model and

allow custom bypass policies to be created for specific events. For example, exception

list policies could be used to enable a specific remote administrator coming from a

predetermined IP address to diagnose a particular application performance issue without

being bound by the whitelist or the blacklist. Blacklists can be thought of as exceptions

that evaluate various factors. Blacklists are similar to “allow” and “deny” settings in

traditional firewalls and are made up of:

• IP sets

• DB user sets

• OS user sets

• Client program sets

41

A “set” is a grouping of like attributes into a named set. For instance, four sets

could be created with groups of users as shown in the following table:

Set 1
Reporting Users

Set 2
DBA Users

Set 3
Application Users

Set 4
Consultant Users

marketing_01 mikesmith peoplesoft_201 jennafortes

marketing_02 williesores sap_user louisegood

marketing_03 davejones siebel_4501 cons_001

marketing_04 johnasher app_001 cons_002

mgt_BI_rep app_002

A blacklist policy can be set against each of these sets. For instance:

Reporting Users Pass, Log all

DBA Users Pass, Alert

Application Users Pass

Consultant Users Block, Log all

Exceptions provide a powerful means of filtering SQL requests at a high level,

simplifying setting of policies for applications, subnets, groups, or users. The following

illustration shows an example exception policy. This policy will allow traffic from the

account application on the secured target, but will block traffic from any other source or

identity.

42

Novelty Rules with Database Firewall
Novelty rules are used to control SQL input for high-level categories of SQL and for

database tables. A novelty rule configuration can act on various categories, depending on

the policy required for security. The categories include:

• Data Manipulation (INSERT, UPDATE, DELETE, SELECT INTO,

 and so on)

• Data Manipulation Read-Only (SELECT)

• Procedural (stored procedures or RPC commands)

• Data Definition (CREATE, DROP, ALTER, and so on)

• Data Control Language (GRANT, REVOKE, and so on)

• Composite (commands that are executed in a transaction)

43

• Transaction (COMMIT, ROLLBACK, and so on)

• Composite with Transaction (a DML statement with a TCL command,

 and so on)

Novelty rules can combine SQL commands with tables, providing an easy way to

disable logging for entire classes of tables such as the underlying database dictionary

tables that are not related to the application itself. Novelty rules can be used to prevent or

allow actions against different tables. Novelty rules are often used for controlling

behavior of DBAs over the network where it might be necessary to stop them from

accessing specific application tables.

Handling Unauthorized SQL with Database Firewall
When Oracle Database Firewall finds an unauthorized statement, it handles the statement

in one of the following ways:

• Alert on all out-of-policy SQL statements.

• Modify the request using SQL statement substitution by replacing an out-of-

policy statement with a new harmless statement that does not return any data.

• Terminate the connection: This blocks all traffic from that specific database

connection to go to the server as it kills the connection. This is the most

aggressive action, and if the application is using connection pooling, this will

impact all the users using the pool.

• Block the SQL statement: This specific statement is stopped from reaching the

database server. The actual end-user experience would depend on how the

application handles this case where the server does not respond. Client connection

to the database can be configured to either continue or terminate.

Database Firewall Network Deployment
Database Firewall can be deployed as a transparent network bridge, simply inserted into

the network in a segment that lies between database clients/application servers and the

databases being protected, as shown in the following illustration. This “in-line” bridge

44

architecture requires no configuration changes to database clients, applications, or the

database itself, and provides the flexibility for both active and passive monitoring. To

passively monitor the database activity, it is also possible to forward the traffic to the

database firewall using the span-port.

In scenarios where it is difficult to add a network bridge, or if the database servers

are in remote places, Database Firewall can also be configured as a proxy such that all

traffic to the database server is routed through the database firewall. This requires the

Database Server IP address/port on the database client or application to be changed to the

IP address/port for the Database Firewall proxy, along with changes to the database

listener to reject direct connections. Most enterprise network switches and traditional

firewalls can also be used to redirect database traffic to a Database Firewall proxy port,

allowing SQL traffic to be protected without any changes to database clients or

applications. A given database firewall can operate as a transparent bridge for some

databases and a proxy for others.

Database Firewall supports a local server-side, monitor-only agent to ensure

flexibility in the choice of the network point at which the traffic is monitored. Host

Monitor, part of the Audit Agent, captures SQL traffic reaching the database server and

securely forwards it to Database Firewall. It can be used to remotely monitor database

servers running on Linux and Windows platforms.

45

CHAPTER 6

Masking Sensitive Data

Reducing the exposure of sensitive data is a challenge faced by many organizations.

Many organizations need realistic data for test and development systems, but they find it

impossible to protect these systems to the same extent as their production systems. As a

result, sensitive and regulated data in nonproduction environments has increasingly

become the target of attackers. Masking data before it is moved from production

environments eliminates the risk of data breaches in nonproduction environments by

irreversibly replacing the original sensitive data with fictitious data so that it can be safely

shared with IT developers or business partners.

At the same time, the overexposure of sensitive data in production applications is

also a challenge faced by many organizations. While displaying sensitive data to

application users may have been common a few years ago, organizations today must

redact sensitive data shown on application screens to better safeguard the data as well as

adhere to local and international regulations. However, this type of redaction inside

application code can be complex and error-prone, especially in a consolidated

environment where multiple applications access the same data. The best and most cost-

effective approach to controlling the exposure of sensitive data in applications is by

enforcing policies inside the production database so that the policies will be enforced

regardless of the application accessing the data.

While masking of data physically alters the stored data so that it can be handed

off to other organizations, redaction of data does not physically alter the stored data; it

simply transforms the data before it leaves the database and is displayed in the

application. In many cases, redaction will only be applied to part of the data, such as the

first twelve digits of the credit card, or the username portion of an e-mail address before

the domain name.

46

Sensitive Data Discovery

Knowing where your sensitive data resides is the first step in deciding how to protect it.

A surprisingly large number of organizations have difficulty locating and identifying all

of their sensitive data due to the complexity and size of large applications. Using the Data

Discovery and Modeling capability in Oracle Enterprise Manager, enterprises can

examine the metadata associated with the applications inside the database, such as

column names and data types, and sample existing data to help identify the sensitive data.

For example, Oracle Enterprise Manager can help locate credit card and U.S. Social

Security numbers based on the column name, column comments, or characteristics of the

data itself. The following example shows data patterns for credit card numbers.

Data Discovery and Modeling also analyzes the relationships between application

objects using the foreign key constraints defined inside the database. This information

about the data types and relationships for an application is referred to as the Application

Data Model (ADM) and is stored in the Oracle Enterprise Manager repository.

Relationships can be manually defined inside the ADM for applications that do not use

database-enforced referential integrity.

Oracle has created Application Accelerators for both Oracle Fusion Applications

and Oracle E-Business Suite. The Application Accelerators list the sensitive data for each

of the applications. Oracle Data Masking uses the Application Accelerators to facilitate

masking of data from production databases to test and development environments.

47

Data Masking

With Oracle Data Masking, Oracle provides end-to-end automation for provisioning test

databases from production in compliance with regulations, as the following diagram

shows. Sensitive information such as credit card or Social Security numbers can be

replaced and used for development and testing without expanding the security perimeter.

This reduces the number of database systems that need to be monitored for compliance

and security.

Masking Format Library

Oracle Data Masking provides an out-of-the-box library with mask formats for the most

common types of sensitive data. Formats in the library include sensitive data such as

credit card numbers, telephone numbers, Social Security numbers, and national

identifiers. By leveraging the Format Library in Oracle Data Masking, enterprises can

apply data privacy rules to sensitive data across enterprise-wide databases and ensure

consistent compliance with regulations. Enterprises can also extend this library with their

own mask formats to meet their specific data privacy and application requirements. Once

the work of associating masking definitions with application attributes is complete, the

formats and data associations can be saved in the Application Data Model and re-

executed when test, development, or partners need a refresh of data. Oracle Data Masking

Pack can mask data in heterogeneous databases, such as IBM DB2 and Microsoft SQL

Server, through the use of Oracle Database Gateways.

48

The Format Library (shown in the preceding illustration) simplifies the masking

process, enabling cost-effective compliance. The library is extensible and can be

customized to meet sophisticated business requirements such as generating e-mail

addresses based on a fictitious set of first and last names.

Powerful Masking Techniques
Oracle Data Masking supports sophisticated masking techniques, enabling complex

applications to function with masked data in test and development environments.

Condition-based masking Apply different masking formats to different rows based on a

condition. For example, data about citizens from multiple

countries stored in the same table would have their unique ID

(SSN, National Identifier) generated differently.

Compound masking Mask related data stored in multiple columns as a group. For

example, city, state, and zip code need to be masked together.

Deterministic masking Enables data to be masked to a consistent value across multiple

databases or applications. This is used to ensure that certain

values (for example, customer number) get masked to the same

value across all databases.

Key-based reversible

masking

Enables data to be masked using a key-based reversible

function. Data can be unmasked using the original key.

49

Cloned and At-Source Data Masking

Oracle Data Masking supports masking data in a database cloned from the production

environment or at-source. With the cloned database, Oracle Data Masking builds a

worklist of the tables and columns chosen for masking and physically alters the stored

data. During the masking process, Oracle Data Masking uses various optimizations so

that objects not required for masking are not touched and tables that are touched are only

touched once. Tables with primary keys are typically masked first. In addition, Oracle

Data Masking uses the NOLOGGING option when creating the masked tables so that

excessive REDO logs are not generated.

Oracle Data Masking now provides At-Source Masking, where the data is masked

during the Oracle data export process. The resulting masked physical export files can

then be directly shared with test and development organizations without the risk of

breaching sensitive data. The new approach also enables data such as documents or

images to be set to a fixed string during the export masking process. This reduces the size

of the data set that needs to be transferred to other organizations.

Data Redaction

In addition to masking sensitive data before exporting it from the database, there is an

increasing need to control the display of sensitive data within applications. For example,

take a call center application with a screen that exposes customer credit card information

and personally identifiable information to call center operators. Exposure of that

information, even to legitimate application users, may violate privacy regulations, put the

data at unnecessary risk, and quite simply expose the information to those without a true

need to know. Traditional approaches to redacting sensitive data typically rely on custom

application logic and result in disparate solutions that are inconsistent across the

enterprise and costly to maintain over their lifetime. In addition, strict controls must be

placed on new application development to make sure that custom application code and

new objects are properly accessed.

Oracle Advanced Security Data Redaction is the selective, on-the-fly redaction or

scrubbing of sensitive data in query results prior to display by applications, as shown in

50

the following illustration. It enables consistent redaction of database columns across

application modules accessing the same data. Data Redaction minimizes changes to

applications because it does not alter actual data in internal database buffers, caches, or

storage, and it preserves the original data type and formatting when transformed data is

returned to the application.

Unlike historical approaches that relied on application coding and new software

components, Data Redaction policies are enforced directly in the Oracle database kernel,

providing consistency across application modules. Redaction can be conditional, based

on different factors that are tracked by the database or passed to the database by

applications such as user identifiers, application identifiers, or client IP addresses. A

redaction format library provides preconfigured column templates to choose from for

common types of sensitive information such as credit card numbers and national

identification numbers. Once enabled, polices are enforced immediately, even for active

sessions.

Data Redaction Policies and Transformations

Data Redaction supports a number of different transformations that can redact all data in

specified columns, preserve certain pieces of the data, or randomly generate replacement

data. Examples of the supported data transformations are shown in the following

illustration.

51

Data Redaction can be applied selectively, based on declarative policy conditions

that utilize the runtime contexts available from the database and from the running

application. Examples include user identifiers, user roles, and client IP addresses. Context

information available from Oracle Application Express (APEX), Oracle Real Application

Security, and Oracle Label Security also can be utilized. Redacting APEX applications is

straightforward because policy conditions can use the application users and application

identifiers that APEX automatically tracks. Multiple runtime conditions can be joined

together within a Data Redaction policy for fine-grained control over when redaction

occurs. Redaction policies are stored and managed inside the database, and they go into

effect immediately upon being enabled.

On the surface, Data Redaction and Oracle Data Masking seem quite similar.

However, there is an important difference in that Oracle Data Redaction does not

physically alter the stored data. As a result, Oracle Data Redaction supports a subset of

the transformations available with Oracle Data Masking. The power of Data Redaction

resides in its superior performance, enforcement inside the database kernel, and the

declarative policy conditions.

Deploying Data Redaction

Data Redaction can be deployed for existing applications quickly using either Oracle

Enterprise Manager or a PL/SQL procedure to specify the protected columns,

transformation types, and conditions. Oracle Enterprise Manager provides an easy-to-use

interface for creating and applying redaction policies, as shown in the following

illustration.

52

Predefined column templates are available in Oracle Enterprise Manager for

redacting common sensitive data such as credit card numbers and U.S. Social Security

numbers, as shown in the following illustration. Enterprise Manager Sensitive Data

Discovery assists in locating columns to be redacted inside complex application schemas.

The Policy Expression Builder within Oracle Enterprise Manager enables

administrators to define and apply redaction policies on existing applications. As shown

in the following illustration, the Policy Expression Builder dialog guides the user through

creating policy conditions that use context obtained from applications, the database, the

APEX framework, and other database security solutions.

53

In addition to the Oracle Enterprise Manager administrative interface, an API

inside the database can be used for scripting and applying redaction policies.

DBMS_REDACT.ADD_POLICY(

 object_schema => 'CALLCENTER',

 object_name => 'CUSTOMERS',

 policy_name => 'Redact Customer PII',

 expression => 'SYS_CONTEXT(''USERENV'',''CLIENT_IDENTIFIER'') !=

''SUPERVISOR04'' OR

 SYS_CONTEXT(''USERENV'',''CLIENT_IDENTIFIER'') IS NULL',

 column_name => 'SSN',

 function_type => DBMS_REDACT.PARTIAL,

 function_parameters => 'VVVFVVFVVVV,VVV-VV-VVVV,X,1,5');

Another reason why Data Redaction is easy to deploy is its transparency to

applications and the database. For application transparency, Data Redaction supports the

column data types that are frequently used by applications and various database objects

including tables, views, and materialized views. Redacted values retain key

characteristics of the original data such as the data type and optional formatting

characters. For transparency to the database, Data Redaction does not affect

administrative tasks such as data movement using Oracle Data Pump or database backup

and restore using Oracle Recovery Manager. It does not interfere with database cluster

configurations such as Oracle Real Application Clusters, Oracle Active Data Guard, and

Oracle GoldenGate.

54

CHAPTER 7

Validating Configuration Compliance

Today’s databases have become very sophisticated with many configuration settings.

Attackers target vulnerabilities in configuration to gain unauthorized access to databases.

For example, well-known username and password combinations in the databases present

an easy target. As a result, it is important to scan the database to ensure that it is securely

configured, and to remediate the situation if there is a deviation. Configuration scanning

can increase the overall security posture of organizations by flagging configuration

mistakes and recommending controls that benefit the overall security architecture.

Security configuration scanning has also become an important part of many

regulations such as the Payment Card Industry Data Security Standard (PCI-DSS),

Sarbanes-Oxley, and numerous breach notification laws. Various organizations such as

the Center for Internet Security (CIS) and U.S. Department of Defense also recommend

configuration best practices. The complexity of compliance cannot be understated as new

regulations are being released and existing regulations are evolving. As a result, having a

solution that can adapt to new regulations is critical.

Security Configuration Scanning
with Oracle Enterprise Manager

Oracle Database Lifecycle Management Pack provides numerous out-of-the-box reports

for basic configuration checks as well as a comprehensive compliance framework. For

example, the account status report shows all database accounts and their status. An

additional report shows database accounts that have default passwords, matching known

passwords for default accounts shipped with various Oracle products. Additional reports

include information on initialization parameters, operating system directory permissions,

user account profiles, and sensitive object reports. These out-of-the-box reports, shown in

Figure 7-1, are accessible from the Reports item on the Security menu.

55

Figure 7-1: Oracle Enterprise Manager security configuration reports

Asset Discovery and Grouping
with Oracle Enterprise Manager

Oracle Database Lifecycle Management Pack eliminates the need to manually track IT

assets including databases. It provides unintrusive network scanning capabilities to

discover servers. Once servers have been discovered, they are easily promoted to a

managed state, automatically discovering all databases and other applications. This

automated discovery simplifies the process of ensuring that all your servers and software

are managed, along with assisting in IT infrastructure consolidation and optimization

initiatives. Because of the ever-growing number of systems and services that

administrators are responsible for, Oracle Enterprise Manager provides a view that

includes only those targets you need to monitor. This view is called a group. Groups are

user-defined sets of targets logically combined to be managed as one. You can use groups

in Oracle Enterprise Manager to monitor and manage different targets collectively, easily

perform administrative operations against the targets, and consolidate and monitor your

distributed targets as one logical entity. For example, you can define a group called TEST

that contains all hosts and database targets within your test environment. From the

group’s home page, you can easily see the overall status and availability of all the targets

56

in your test group, instead of having to check the status of each individual member. Even

if group membership changes, any jobs submitted to the group automatically keep up

with group membership.

From a group’s home page, whether the group is based on a homogeneous set of

targets or a heterogeneous set of targets, such as a business’s application, an

administrator can

• Easily determine the overall security configuration compliance of all the members

in the group and outstanding alerts

• Drill down and analyze the specifics of a particular target

• Easily determine the status of members of the groups through the rollup of alerts,

with quick drill-down into alert details

Oracle Enterprise Manager Configuration Scanning
Oracle Database Lifecycle Management Pack provides a powerful compliance scanning

solution consisting of compliance frameworks, compliance standards, and compliance

standard rules as described in the following table.

Compliance Framework A compliance framework is an industry-specified best-

practices guideline that deals with the underlying IT

infrastructure, applications, and processes. Compliance

frameworks are hierarchical to allow for direct representation

of these industry frameworks. A compliance framework can

be used to represent a framework such as PCI.

Compliance Standard A compliance standard is a collection of checks or rules for a

specific target type.

Compliance Standard

Rule

A compliance standard rule is a test to determine a specific

configuration parameter or status. Oracle supports the

following types of rules.

• Repository Rules evaluate the metrics collected
periodically for a target.

• Real-Time Monitoring Rules monitor changes to files,
processes, and more.

57

Configuration Compliance Standards
Provided by Oracle

Compliance standards serve as standards by which targets are measured. These standards

represent best practices and allow the security administrator to maintain consistency

across enterprise systems and configurations. In addition, the trend analysis feature

allows fine-grained tracking of compliance scores over time.

The preceding illustration shows the Basic Security Configuration Check for

Oracle databases and shows the large number of checks that are performed out of the box.

Checks performed include analyzing Directory and File Permissions, Oracle Parameter

Settings, Database Password Profile Settings, Oracle executable file ownership, and

Network Configuration Settings. Oracle Enterprise Manager ships over four dozen out-

of-the-box compliance standards, which include:

• Basic Security Configuration for Oracle Cluster Database

• Basic Security Configuration for Oracle Cluster Database Instance

• Basic Security Configuration for Oracle Listener

• Configuration Monitoring for Exadata Compute Node

• Configuration Monitoring for Security Linux Packages

58

Managing Frameworks,
Compliance Standards, and Rules

Oracle Enterprise Manager provides an extensible framework that supports the creation

of new frameworks, standards, and rules. This extensibility enables organizations to adapt

to the ever-changing world of compliance and also create custom configuration scans to

test systems against internal best practices. Compliance standard rules can be created

through Oracle Enterprise Manager, as shown in the following illustration. Rules can also

be imported and exported in XML format.

Event severity is critical to security configuration scanning. Events in Oracle

Enterprise Manager can have the following severity levels:

• Fatal The monitored target is down.

• Critical Immediate action is required in a particular area. The area is either not

functional or indicative of imminent problems.

• Warning Attention is required in a particular area, but the area is still

functional.

59

• Advisory While the particular area does not require immediate attention,

caution is recommended regarding the area’s current state. This severity is used

primarily for compliance standards.

• Informational A specific area condition has just occurred.

Real-Time Monitoring with Oracle Enterprise Manager

Oracle Database Lifecycle Management Pack enables real-time monitoring to monitor

any action that can happen against a file, a database object, or a Microsoft Windows

Registry key. It can also monitor the starting and stopping of processes, and the logging

in, logging out, and switching user (su) activity of users. The real-time aspect of the

monitoring means that it captures the exact time the action occurred along with the name

of the user who performed the action.

Results from real-time monitoring can be reconciled with a Change Management

system such as BMC Remedy. This reconciliation can automatically determine if an

action was supposed to happen (authorized) or not (unauthorized). Without a Change

Management server, this audit status annotation can be made manually through the

management console. By reconciling what is happening in the environment to the

customer’s change management process, real-time monitoring helps to identify out-of-

policy actions that will lead to either a high-risk environment, or a compliance control

that will fail audits.

Central to real-time monitoring is the concept of a facet. Facets are essentially

items such as configuration files, log files, processes, and sensitive database tables. A

given target can have many facets associated with it. Based on the facets, Multiple Real-

Time Monitoring standards can be created for Core Linux Packages, Exadata Compute

Nodes, and User Access Linux packages.

Out of the box, Oracle Enterprise Manager provides hundreds of predefined

facets. As with frameworks and standards, facets can be defined and customized.

60

Target-Type Facet Description

Log Files Monitor when regular users modify a log file (not a system

user).

Binary/Library Files Monitor if a binary is tampered with or when a binary is

patched. Instead of listing each individual binary, it can also list

a whole directory, but exclude frequently changing files.

Configuration Files Capture changes made to any configuration files.

Security Key Files Monitor files that store certificates, keys, and so on.

Security Configuration Files Monitor files that configure how security works in the target

type, such as encryption configuration, and so on.

Utility Processes Monitor processes that normally run during a maintenance

period, but should not be run during production.

Registry Keys Monitor Microsoft Windows registry keys that affect the

configuration of the target.

Configuration Tables Monitor any database tables that store configuration data.

Each facet has an entity type that defines what kind of entities the facet describes.

For example, for OS-level monitoring, there are OS File, OS Process, OS User, Windows

Registry, and several Active Directory entity types. For database monitoring, the entity

types include Table, View, Index, and Procedure, among others. Creation of facets is

possible through the Facet Library screen.

When you define a real-time monitoring rule, the first thing you have to decide is

what entity type on a host to monitor. For Oracle Enterprise Manager Cloud Control 12c,

entity types that can be monitored with Real-Time Monitoring Rules include those listed

in the following table:

OS File OS Process OS User
Oracle Database

User

Oracle Database

Table

Oracle Database

View

Oracle Database

Procedure

Oracle Database

Profile

Oracle Database

Link

Oracle Database

Function

Oracle Database

Package

Oracle Database

Sequence

Oracle Database

Trigger

Oracle Database

Tablespace

Oracle Database

Materialized View

Oracle Database

Cluster

61

Using Notifications with Oracle Enterprise Manager

Notifications are an integral part of the Oracle Enterprise Manager management

framework. Notifications can perform actions such as executing operating system

commands (including scripts) and PL/SQL procedures when specific incidents, events, or

problems occur. This capability allows you to automate IT practices. For example, if an

incident occurs, such as a change in the operational (up/down) status of a database, the

notification system can use an OS script to automatically open an in-house trouble-ticket

so that the appropriate IT staff can respond in a timely manner. By using Simple Network

Management Protocol (SNMP) traps, the Oracle Enterprise Manager notification system

also allows you to send traps to SNMP-enabled third-party applications such as HP

OpenView or BMC Remedy for events published in Oracle Enterprise Manager, such as

when a certain metric has exceeded a threshold.

Patch Management with Oracle Enterprise Manager

Oracle Database Lifecycle Management Pack supports the entire Patch Management

Lifecycle including patch advisories, predeployment analysis, rollout, and reporting. It is

integrated with My Oracle Support to provide a synchronized view of available and

recommended patches. These patches can then be analyzed for conflicts before

deployment. One can then apply multiple patches to multiple databases in a single

downtime window. The Deployment Procedures for patching are designed to enable

maximum ease and minimum downtime by using sophisticated techniques such as rolling

patching for RAC and out-of-place patching. Change Activity Planner (CAP) enables you

to plan, manage, and monitor complex operations that involve dependencies and

coordination of owners as well as multiple processes. These operations can include

rollout of security patches every quarter, building new servers to meet a business

demand, migration or consolidation of data centers, and rolling out compliance standards

across an environment.

Using CAP an administrator can

• Plan change activity, including setting start and end dates; and creating, assigning,

and tracking task status.

62

• Manage large numbers of tasks and targets, using automated task assignment and

completion support.

• Use a dashboard where you can monitor your plans for potential delays and

quickly evaluate overall plan status.

• Have task owners manage their own tasks using priority- or schedule-based view

support on their own dashboards.

Configuration Compliance
Within Oracle Enterprise Manager

While the powerful SYSMAN account can be used to navigate the compliance framework,

Oracle supports Separation of Duty with highly granular privileges to control who can

view results and perform specific actions. The following privileges and roles are

supported to manage access to the configuration standards:

Privilege Description

CREATE_COMPLIANCE_ENTITY Create compliance standards, rules, and Real-Time

Monitoring facets

FULL_ANY_COMPLIANCE_ENTITY Manage compliance standards and compliance

standard rules

VIEW_ANY_COMPLIANCE_FWK View compliance framework definition and results

MANAGE_TARGET_COMPLIANCE Associate a compliance standard to a target

VIEW View a single target

Role Description

EM_COMPLIANCE_DESIGNER Create, modify, and delete compliance standards,

compliance standard rules, and Real-Time Monitoring

facets.

EM_COMPLIANCE_OFFICER View compliance framework definitions and results.

63

Further Information

Security Information Portals

• Oracle Database Security

• Database Security on Oracle Technology Network

Oracle Product Documentation

• All Oracle Database Documentation

• Oracle Database Security Guide

• Oracle Audit Vault and Database Firewall

• Oracle Advanced Security

• Oracle Database Vault

• Oracle Label Security

• Oracle Data Masking

http://www.oracle.com/us/products/database/security/
http://www.oracle.com/technetwork/database/security/
http://www.oracle.com/technetwork/database/enterprise-edition/documentation/index.html
http://docs.oracle.com/cd/E16655_01/network.121/e17607/toc.htm
http://docs.oracle.com/cd/E37100_01/index.htm
http://docs.oracle.com/cd/E16655_01/network.121/e17729/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17608/toc.htm
http://docs.oracle.com/cd/E16655_01/network.121/e17730/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e20852/tdm_data_masking.htm

	Cover

	About the Authors

	Foreword

	Acknowledgments

	Introduction

	Chapter 1: Controlling Data Access and Restricting Privileged Users

	User Management
	Oracle Multitenant Database Users
	Storing Passwords
	Authentication Methods
	Centralized User Management
	Users with Administrative Privileges
	Proxy Authentication and Authorization
	Basic Access Control
	System Privileges and Roles
	Least Privilege and Separation of Duty
	Controlling Privileged Users
	Managing Granted Privileges

	Chapter 2: Preventing Direct Access to Data

	Data at Rest
	Data in Transit
	Key Management and Storage

	Chapter 3: Advanced Access Control

	Controlling Access Using Data Labels
	Applying Access Control Policies to Application End Users

	Chapter 4: Auditing Database Activity
	Audit Changes in Oracle Database 12c
	Predefined Audit Policies in Oracle Database 12c
	Customized Audit Policies
	Monitoring with Oracle Audit Vault and Database Firewall
	Reporting and Alerting

	Chapter 5: Controlling SQL Input

	Oracle Audit Vault and Database Firewall
	Whitelists with Database Firewall
	Blacklists with Database Firewall
	Novelty Rules with Database Firewall
	Handling Unauthorized SQL with Database Firewall
	Database Firewall Network Deployment

	Chapter 6: Masking Sensitive Data

	Sensitive Data Discovery
	Data Masking
	Masking Format Library
	Powerful Masking Techniques
	Cloned and At-Source Data Masking
	Data Redaction
	Data Redaction Policies and Transformations
	Deploying Data Redaction

	Chapter 7: Validating Configuration Compliance

	Security Configuration Scanning with Oracle Enterprise Manager
	Asset Discovery and Grouping with Oracle Enterprise Manager
	Oracle Enterprise Manager Configuration Scanning
	Configuration Compliance Standards Provided by Oracle
	Managing Frameworks, Compliance Standards, and Rules
	Real-Time Monitoring with Oracle Enterprise Manager
	Using Notifications with Oracle Enterprise Manager
	Patch Management with Oracle Enterprise Manager
	Configuration Compliance Within Oracle Enterprise Manager

	Further Information
	Security Information Portals
	Oracle Product Documentation

